
A DESIGN APPROACH FOR DYNAMIC RECONFIGURATION OF UNATTENDED
SENSORS, UNMANNED SYSTEMS, AND MONITORING STATIONS

Matthew W. Skalny and William Smuda

TARDEC Robotics Mobility Lab
Warren, MI 48397-5000

ABSTRACT

The design and implementation of software for
networked systems of diverse physical assets is a
continuing challenge to robotic and network sensor
developers. The problems are often multiplied when
reconfiguring or adding new elements to existing designs
in order to meet the demands of changing tactics and
missions, and to meet new requirements for
interoperability and additional capabilities. Systems are
often designed in a way such that configuration and
reconfiguration may be difficult, time consuming, and
costly. Interoperability between new and legacy systems
may require significant changes to the code and design of
a system. Static or closed designs can lead to a system
that is difficult to add new sensors or payloads to. In this
paper, we describe a design approach that utilizes Model
Driven Engineering (MDE), the OSGi Service
Platform framework (OSGi), and an open, flexible
services oriented architecture to maximize software
reuse and to ensure rapid development of new features
and capabilities to meet the changing requirements for
unmanned systems.

1. INTRODUCTION

1.1 Model Driven Engineering

Model Driven Engineering focuses on abstractions
particular to the application problem space and expresses
designs in terms of concepts from that space (Schmidt,
2006). MDE combines software components to conform
to specific design patterns with Domain Specific
Languages. These languages describe a Meta Model,
often graphical, that defines the relationships of
abstractions in the domain. Domain engineers then create
concrete instances of the Meta Model using icons that
represent available services and components for the
composition of the final design. Using this completed
design, program generators assemble the services and
components and create the glue code that allows them to
work together as a single, cohesive system.

Figure 1 shows a Meta Model for a robot system
done using the open source Generic Modeling
Environment (GME). The model is done using the
Unified Modeling Language (UML). In this case, the top

level model element is labeled “Robot”. The robot Meta
Model contains both messages and artifacts – abstract
services with no implementation defined. Five different
atoms provide possible implementations of artifacts.
Artifacts can send or receive zero or more different
messages.

Figure 1: Simple Meta Model for a Robot

The Meta Model shown in figure 1 may be used to
create a domain specific composition as shown in figure
2. The model in figure 2 has three robots, a leader and
two followers. Each robot has a GPS positioning sensor
and the two followers have distance sensors. The
waypoint driver control computer computes waypoints for
the two followers based on the input from the five
sensors, and passes new messages to the primitive driver
to control the two follower robots.

Figure 2: Domain Model for Multiple Robot System

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Design Approach For Dynamic Reconfiguration Of Unattended
Sensors, Unmanned Systems, And Monitoring Stations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TARDEC Robotics Mobility Lab Warren, MI 48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.2. OSGi and Services Oriented Architecture

From the OSGi alliance website (OSGi Alliance,
2006), “OSGi technology provides a service-oriented,
component-based environment for developers and offers
standardized ways to manage the software lifecycle.
These capabilities greatly increase the value of a wide
range of computers and devices that use the Java™
platform.” A basic setup using OSGi involves four main
levels – the hardware, the Java Virtual Machine (JVM),
the OSGi framework, and the application layer. The
hardware is essentially any device capable of running
some form of JVM that and implementation of the OSGi
framework can run on, whether it be a scaled down
version of Java for embedded processors to the full Java
Runtime Environment that one would see on a PC. The
JVM is the runtime environment on top of which the
OSGi service framework runs. The OSGi framework
provides the environment that manages the lifecycle of
“bundles” of code, or components. One or more
components define a feature, such as a primitive driver for
a robot. The OSGi framework supports a Services
Oriented Architecture through its service registry –
providing a way for components running in the OSGi
execution environment to look up other services they need
is a loosely coupled way.

A Services Oriented Architecture (SOA) is an
architecture that is based on services. Services define a
contract that any object implementing that service must
follow. This allows for a variety of implementations of
the same service. This is one of the key benefits of using
SOA in the OSGi runtime environment – different
implementations of the same service can be used
depending on the situation. This creates a loose coupling
between components, so, for example, if one needed to
switch to using Ethernet communications as opposed to
serial communications, the switch would be trivial as long
as both communications features implement the same
service contract. The ability to remotely deploy new
bundles of code into running OSGi framework
environments also contributes to ensuring interoperability,
so if a new requirement came out for a change to a
communications component for example, a new
implementation of the communications service could be
sent out to the device running the OSGi framework and
replace the older service without requiring significant
changes in other components due to the loose coupling of
services. Figure 4 in section 2.2.2 shows an example of
components running on a robot/sensor in an OSGi
runtime.

2. MAXIMIZING SOFTWARE REUSE, ENSURING

INTEROPERABILITY, AND DYNAMIC
RECONFIGURABILITY

The combination of Model Driven Engineering
(MDE), use of the OSGi service platform, and use of a
Services Oriented Architecture (SOA) is a powerful and
very valuable combination for unmanned system and
sensor development. MDE provides the software
reusability and ease of configuration by allowing users to
take pre-existing models that correspond to automatic
generation of code and using them to create or modify
complete systems. The OSGi + SOA combination
provides the reconfigurability and helps ensure future
interoperability because of its loose coupling of services,
ability for remote deployment of new or updated features,
and because it allows multiple implementations of the
same service to remain invisible to the features requiring
that service.

2.1 Model Driven Engineering Approach

Figure 3: Diagram of Model Drive Engineering

Process

Figure 3 shows the MDE approach we take visually as a
block diagram of high level abstractions. The placement
of the abstractions indicates a progression from a flexible
sub-architecture in the realm of the software engineer at
the bottom, to a generic sub-architecture in the realm of
the robotic/unattended sensor engineer in the middle, and
finally to the user/evaluator realm at the top of the figure.
The MDE approach is critical to reuse of software and
efficient, domain level design of software systems.

2.1.1 Code Base
The code base block on the left of figure 3 represents

some abstract storage mechanism, which could be a
database, files, or some other mechanism. Code (in this
case services and their implementations that will run in
the OSGi environment) is stored in this storage
mechanism and is used in the MDE approach.

2.1.2 Foundation
The block at the very bottom of figure 3 represents

the foundation for the MDE design approach – it includes
tools, guidelines, requirements, standards, etc. This
foundation is used as a base for higher levels in the MDE
process.

2

2.1.3 Components
Above the foundation in figure 3, but still in the

realm of the software engineer lie a set of blocks that
represent reusable components. These components are
stored in the code base when completed. Systems are
composed using these components. Components can be
added and removed as time goes on, but new Meta
Models must be created to take advantage of the new
components. These components can be implementations
of one or more services.

2.1.4 Meta Model
The third block up from the bottom of figure 3

represents the Meta Models. This is the spine of the MDE
architecture. Meta Models are created by software
engineers with knowledge of the domain or software
engineers collaborating with domain experts (i.e. a
software engineer collaborating with a robotic systems
expert). The Meta Model encapsulates high level
information about the system and defines component
relationships and constraints.

2.1.5 Domain Model
The fourth block up in figure 3 is the domain specific

modeling tool. This tool is generated from the Meta
Model – it is a workspace from which concrete models of
the system under construction may be instantiated, and is
the level at which the domain expert operates.

2.1.6 Composition/Generation
The composition/generation block is where

everything is put together – components in the domain
model are assembled together by a domain expert to
create the software necessary for the system to establish
some task. This leads to the final block at the top of
figure 3, the node code, which is the actual code needed
to run the software for the system.

2.2 OSGi and a Service Oriented Architecture (SOA)
for Ensuring Interoperability and Reconfigurability

Using the OSGi framework with a Services Oriented
Architecture (SOA) is the second piece of the puzzle of
ensuring software reuse, interoperability, and
reconfigurability. The OSGi + SOA combination is the
key factor on top of the MDE approach to making
unmanned systems and sensors easy and quick to
reconfigure and update, and efficient to add new features
to, including upgrades that support interoperability with
new standards, communications, and hardware.

2.2.1 OSGi – Managing the Lifecycle of Components
Components created using the MDE design approach

are eventually deployed as services to an OSGi runtime
environment running on a target unmanned system,
sensor, or other device. These OSGi compliant
components can be deployed from some data/code storage
location either from the machine running the OSGi

environment itself, or from some remote location over a
network or other communications link. The OSGi
runtime manages components that can be dynamically
installed, started, stopped, updated and uninstalled. This
means that as new or updated features are created, they
can be deployed to the runtime environment on a robot or
unattended sensor with little or no impact to proper
function of the robot or unattended sensor. Using OSGi
along with the library of services that can be created
through the MDE design approach leads to the capability
to rapidly develop and reconfigure components for remote
deployment to an unmanned system or sensor. Along
with a loosely coupled SOA, this leads to the ability to
ensure that new features and payloads can rapidly be
added to robots or sensor networks, and to make sure that
code can quickly be updated to comply with changing
standards and requirements.

2.2.2 Using a Services Oriented Architecture with OSGi
to Ensure Interoperability and Dynamic
Reconfigurability

Generating components that implement services in
the MDE design approach and using those service
provides (components) in the OSGi runtime on a robot,
unattended sensor, or other device allows for a very easy
way to make sure that as standards and requirements
change, that a robot or unattended sensor can keep up
with those requirements. Figure 4 illustrates a simple
Services Oriented Architecture based environment
running on a robot using an OSGi framework.

Figure 4: OSGi Setup on a Robot/Sensor using a

Services Oriented Architecture

3

In figure 4, there are two implementations of a
Communications (Comms) Service – these are
components running in the OSGi runtime environment.
For each of these components, there is configuration
information indicating that they are registering that they
export a Comms Service. This is essentially telling the
Service Registry in the OSGi runtime environment that if
any other component requires a Comms Service, both of
these two implementations can provide that service. In
the case of figure 4, there are several components that
need a Comms Service to talk to the outside world,
perhaps an OCU. Let us call one of these components
requiring Comms Service the Robot Commander. The
Robot Commander doesn’t care how it communicates –
all it knows is that it needs some implementation of a
Comms Service. The actual way that one of the services
is picked is dependent on the OSGi environment and user
preference, but it could be based on some configuration
data, the most current version of a service could be used,
or a random service could be grabbed if no negative
effects were expected. It is because of the ability to
update or deploy new components into the OSGi runtime,
along with the loose coupling of the Robot Commander to
the Comms Service implementation, that making sure
systems stay interoperable is relatively simple. In this
case, if we were required to change the way we do
communications with the Robot Commander due to
requirements for talking to new systems, all we would
have to do is create a new component that complies with
the new requirement and deploy it to the OSGi runtime
environment on the robot. The Robot Commander could
then use that new Comms implementation without
requiring any changes to itself since the new
communicator implements and exposes the Comms
Service that the Robot Commander needs.

2.3 MDE + OSGi + SOA – Wrapping them All
Together

Generalizing the example of figure 4, it is easy to see
how combining the use of MDE, OSGi, and SOA leads to
unmanned systems and sensors that can be rapidly
developed, easily reconfigured, and kept up to date with
new interoperability standards and features. Using the
MDE design approach allows significant reuse of code
and reduction of effort by storing components created in a
code base. If these components are designed as OSGi
compliant service implementations, then they can be
remotely deployed to an OSGi runtime environment on a
robot or sensor device and can register the services that
they provide for use by other components in the
environment. By having components only depend on
services and not implementations, updating capabilities,
including adding new features or making changes to
ensure interoperability, can be done by simply deploying
new components that expose the required services for use
by existing components. This section is a somewhat high
level description of the key concepts of software reuse,

ensuring interoperability, and reconfigurability – section 3
uses a detailed concrete example to better show how the
MDE + OSGi + SOA works.

3. EXAMPLE: UNMANNED SYSTEM DESIGN
USING MDE, OSGI, AND SOA

In this section, we describe a situation in which we
have a simple robot that we need to design software for.
Initially, the robot has the following design: a Driver for
steering and driving around and a Communicator that
receives drive commands. The design also includes a
Bump Sensor which we initially do not have – when the
Bump Sensor is present, it can be used to prevent drive
commands from running the robot into a non-passable
boundary. The Bump Sensor utilizes a 360 degree Sonar
Sensor to determine when it is about to “bump”. There is
also an OCU that sends the drive commands to the robot’s
Driver through the Communicator.

We first describe how we use the MDE design
approach to define a Meta Model for the robot, including
its Driver and Communicator components. After that, we
add a new capability, the bump sensor, and show how
utilizing SOA and OSGi it can rapidly and seamlessly be
integrated into the robot system. After that, a new
requirement comes in to make the robot JAUS compliant
and able to receive JAUS drive commands from the OCU
– this shows how using OSGi and SOA, along with
reusing components from the original MDE design
process, we can rapidly reconfigure the robot to make
sure it is interoperable with JAUS OCUs and other JAUS
robots. Finally, we summarize the entire process and
discuss its extension to use on a real robot.

3.1 MDE Approach to Create Robot System

We step through figure 3 to lay out step by step the
MDE design approach for creating the robot system that
we desire.

3.1.1 Code Base
In this case, the code base will consist of java

components written to implement service contracts. The
services that will be implemented are the Communicator
Service, the Driver Service, Sonar Service, and a Bump
Sensor Service. Each implementation of these services
will be packaged as a jar for deployment into the OSGi
runtime environment.

3.1.2 Foundation
We will use the Generic Modeling Environment

software (GME, 2006), an open source, visual, and
configurable environment for creating Domain Specific
Modeling languages, to develop our Meta Model. The
Eclipse IDE will be used for working with Java code and
for using the Equinox OSGi (Eclipse, 2006) runtime for

4

deploying bundles to – this is also chosen because it is
widely used and open source. The domain model will be
represented by XML once completed. For now, our robot
will be simulated in a Java-based simulation environment,
but later sub-sections will explain how the combination of
OSGi + SOA would allow quick transition into a real
robot.

3.1.3 Components
For the initial design of the robot, we need the

following components: Driver implementing Driver
Service and Simple Communicator implementing
Communicator Service. Initially, we will not have a
bump sensor component, but will still need to define the
Bump Sensor Service for use by the Driver – in this case
we use a Fake Bump Sensor that always indicates nothing
is being bumped, effectively letting the Driver function
without a filter checking for collisions. The Sonar Sensor
will implement a Sonar Service, and will be used by the
bump sensor. The Driver will move the robot around the
simulated environment, and the communicator will
receive messages from an OCU containing drive
commands as simple text messages like
“message=drive&xeffort=[XEFFORT]&yeffort=[YEFFO
RT]&rotation=[ROTATION]”. Xeffort is the effort as a
percentage total possible speed that the robot should move
in the x direction, and yeffort is the percentage of the total
possible speed of the robot in the y direction. Rotation is
the rotational speed of the robot in rad/s. Figure 5 in 3.1.5
illustrates graphically the setup of the robot system.

3.1.4 Meta Model
We use the Meta Model in figure 1 for this example.

We will have a number of sensors on our robot, and it will
communicate with the OCU. These objects and their
relationships to each other are defined in the Meta Model
in figure 1.

3.1.5 Domain Model
The Domain Model we use descends from the Meta

Model of figure 1. We have defined a number of
components based on the Meta Model of figure 1. Figure
5 shows the Domain Model for our simulated robot
system. We will have a robot (“ODIS”) containing the
Driver and Communicator connected to an OCU. It will
make use of a Bump Sensor (“BumpControl”) to act as a
filter for the Driver – when implemented, the Bump
Sensor will use a simulated 360 degree sonar to determine
when something is “bumped”. As can be seen, this
Domain Model is a simple block diagram that can easily
be assembled with someone with knowledge of robotics
but without any software engineering expertise. The
blocks (and masked sub-blocks) shown in figure 5 are
also placed into the code base as available components for
deployment.

Figure 5: Robot Bump Control Domain Model

To create this Domain Model, we, in the role of the
Domain Engineer, have connected the components with
arrows representing information paths and overrode the
default naming attributes.

3.1.6 Composition/Generation
The output of the Domain Model we have created is a

specification for an application based on constraints and
relationships from the Meta Model and manipulation of
the model by us in the role as the Domain Engineer. A set
of components forming our robot application is generated
from the specification that is outputted from the domain
model, along with the information from the Meta Model.
These components are now available in the code base, and
are ready for deployment.

3.2 Deployment of Components to OSGi Runtime
Environment on Robot

We now have generated the code needed to run on
the robot through the MDE process. What needs to be
done now is to deploy the components that have been
developed onto the robot. For now, since we are
simulating the robot, the components will be deployed to
the same platform as the code base storage. We use the
Equinox framework from Eclipse (Eclipse, 2006) as our
OSGi implementation.

For code base storage, we are currently just storing a
set of jars representing the various components in a folder
on the file system. At startup, the equinox platform is
only running some core platform jars – we must add our
components to the runtime so that they may be started and
used. We simply install each component jar into the
runtime environment – at this point they are not active,
but they do contain information about what services they
provide, what services they need, and other configuration
and deployment information. We can now tell the
Equinox runtime to start the individual components –
using configuration files packaged with the component
jars, components that depend on certain services (like
how the Driver requires the Communicator Service) will
look for that service in the runtime environment and start

5

it if found (in our case, since we have installed all
components, it is found). Now that all the components
have been started, we have a functional (simulated) robot
that can drive around the simulation environment using its
Driver, and can receive commands from an OCU or other
source using the Simple Communicator. In this case, the
OCU is just a simple java app, but it could easily also
have its own OSGi runtime environment and be using the
same Communicator Service and components as the
robot. Figure 6 shows how components running in the
robot’s OSGi runtime depend on each other – dashed
lines indicate components that are not in the initial
deployment, but will be put on the robot in place of
another component for various reasons in Case 1 and
Case 2 to follow.

Figure 6: Diagram of the Components Running on the

Robot and the Service they Implement/Use

3.3 Case 1: Addition of a Real Bump Sensor

As we run the simulation environment with the OCU
providing commands to the simulated robot, we notice
that it is possible to drive the robot into the boundaries
(walls) of the simulation. Clearly, running into walls in
the real world is not desired, and we’d like to find a way
to prevent this in the simulation that can be applied to a
real robot. We now add a real bump sensor to the robot to
replace the simple fake one. The Bump Sensor serves as
a filter for the Driver component – if the bump sensor
indicates the robot is running into something, its status
will change and the Driver will use that status to override
the command from the OCU and stop the robot before it
makes impact with the wall.

Using the MDE process and OSGi with a Service
Oriented Architecture, it is a simple and elegant process
to implement this real bump sensor. First, the domain
model must be updated to use a real Bump Sensor
component in place of the generic fake one. This can be
done at the domain specific level by the robot engineer

assuming a real Bump Sensor component already exists in
the code base. The Fake Bump Sensor running in the
OSGi runtime on the robot is next stopped and/or
uninstalled remotely or locally, and the new Bump Sensor
is sent to the robot either from a local or remote code
storage source. Since both the Fake Bump Sensor and the
real Bump Sensor implement the same Bump Sensor
Service, the transition will be seamless to the Driver
component that is using the Bump Sensor Service – it will
now be able to use the new Bump Sensor and get accurate
information on when it is bumping into a wall or other
obstacle.

3.4 Case 2: JAUS Requirement Added

Up until now, we have been using a Simple
Communicator that uses basic text based messages. This
simulates what might be a proprietary or legacy
communications method. Using the architecture and
methods we have explained, updating this to meet a new
JAUS requirement is very straightforward. JAUS, the
Joint Architecture for Unmanned Systems (soon to be an
SAE standard) is a message-passing architecture for
communications among unmanned systems (JAUS
Working Group, 2006). All we must do is replace the
Simple Communicator with a new JAUS Communicator
just as we did for the Bump Sensor. Again, since the
JAUS Communicator implements the Communicator
Service just like the Simple Communicator did, the
change will be transparent to all components that depend
on having a Communicator Service and the robot will
now be interoperable with JAUS. Another thing to note is
that if we wanted to have an even looser coupling in our
system, we could have each component depend only on a
single messaging service – each component could bind to
this service and send messages through it, allowing the
messaging service to route messages as needed and send
messages in the proper format (i.e. custom format vs.
JAUS standard).

3.5 Summary and Extension to a Real Robot

In this section, we have shown how using a
combination of Model Driven Engineering with a runtime
environment of OSGi and a Services Oriented
Architecture, that applications for unmanned systems and
sensors can rapidly be developed and deployed, both
locally and remotely. However, we have used a simulated
robot – clearly, we want to apply this to real robots. This
is where we see the true power of using the Service
Oriented Architecture. As already seen through addition
of the real Bump Sensor and JAUS Communicator, it is a
simple process to add new implementation of services to
the runtime on a robot, unattended sensor, or other device
that is running an OSGi runtime. The fact that we are
using a Services Oriented Architecture where components
depend on services and not specific implementations
allows us to create very flexible and upgradeable systems.

6

If we know that there are sensors or payloads that we will
want to use or support, but do not have available at the
time, we can use a simulated version of that device until a
real one is available. This allows for an environment of
simulated and real devices in which testing can be done
even if not all the necessary hardware is available at the
time. Adding new hardware is also simple, as the
communications, transport, and device code needed can
be remotely sent to the OSGi runtime when needed.
Updates can be as simple as adding the new component
and binding it to a messaging service that all components
talk to each other through – i.e. a new JAUS component
could be added to a robot and “hooked up” to a JAUS
messaging service that routes JAUS messages to their
proper destinations.

4. RELATED WORK

4.1 Chrysler AG

Czarnecki, Bednasch, Unger and Eisenecker report
on their experience at Chrysler AG for automotive and
satellite applications (Czarnecki et al, 2002). They
describe their experience with Model Driven Design and
Feature Modeling tool support with the GME tool.

The feature model has a root or concept node and
child nodes. The child nodes or sets of child nodes are
mandatory, optional, alternative or “or” features. The
nodes are combined in various ways to produce an
instance of a concept. For example, a car (concept) can
have a manual, automatic or CV transmission, but only
one transmission. A car may also have a fossil fuel
motor, and electric motor or both.

In the referenced work, they present a UML Meta
Model for feature modeling notation using GME. They
also show a derived domain specific model, also using
GME.
4.2 Embedded System Control Language

Additional work at Vanderbilt University uses the
GME tool, along with Mathworks Simulink and
Stateflow tools to create the Embedded Control Systems
Language (ESQL) to support development of distributed
embedded automotive application (GME, 2006). ESQL
imports the Simulink/Stateflow models into the GME
environment. ESQL is a graphical modeling language for
with a suite of sublanguages. Sublanguages are provided
to support functional modeling, component modeling,
hardware topology modeling and deployment mapping.

The ECSL also has a code generation component.
The generated artifacts can synthesize the entire
application behavior code, or external application
behavior code can be linked in.

4.3 TARDEC Robotics Mobility Lab (TRML)
Innovative Laboratory Internal Research (ILIR)

The TRML, in cooperation with the Naval
Postgraduate School (NPS) is conducting research into
software reuse via composable components and graphical
configuration languages. This work is the basis for the
MDE portions of this paper.

The major difference between this effort and the two
cited above is the target users and target life cycle time.
The above tools are being designed for software
engineering production departments. The TRML effort is
targeting Domain engineers, early in the system lifecycle.

Prototype systems are typically created in response to
evolving requirements or to evaluate emerging
technologies, such as sensors or mission packages. In
some cases, rapid prototypes and/or simulations are
necessary to evaluate procurement proposals.

The main goals of the TRML efforts are to capture
and encapsulate software engineering expertise into a
tool. The tools we are creating extend the software
engineers knowledge in a constrained environment
operated by Domain engineers to rapidly create prototype
systems.

4.4 National Automotive Center’s Pervasive
Computing Lab.

The OSGi and Services Oriented Architecture
approaches in this paper are based on similar ongoing
work at the National Automotive Center’s Pervasive
Computing Lab. The work has involved integration of
various sensors and other applications on to both vehicle
and hand held (tablet PC) platforms under a project called
Cyrano. Using the OSGi and SOA concepts described in
this paper, we have been able to rapidly develop
applications for vehicle diagnostics using data from the
vehicle bus, situational awareness, chemical and radiation
sensors, GPS, and a wide variety of other devices and
communications protocols. Using a Services Oriented
Architecture with OSGi has allowed us to very quickly
develop applications based on customer feedback and
requirements, in as little as a week or two. The SOA
architecture also allows us to utilize simulated and fake
devices and sensors interchangeably with the real things,
as some of the devices are often unavailable, expensive,
or provided on a time-limited basis.

5. FUTURE WORK

Future work with MDE includes implementation of
the design environment for prototyping a series of robotic
systems. Beginning with simple models, robot
simulations and very coarse grained components, the

7

simple models presented earlier will be realized.
Continuing, the Meta Models will be refined to include
lower level component composition. A set of robotic
artifacts (platforms, controls, OCU’s etc.) will have their
interfaces wrapped to conform to the JAUS standard. A
collection of instrumentation components will be created,
as well as several different communications components;
UDP/IP and serial to begin with. As we grow more
confident with the Meta Models and domain specific
models, additional artifacts such as mission packages and
manipulators will be included both in simulation and
physically.

Future work involving the OSGi and SOA concepts
of this paper will focus mainly on deployment of
applications of the concepts onto actual robot platforms.
This may involve integration with the related work that
has been done with sensor integration on vehicle and
tablet PC platforms. A robot could easily be integrated as
another application to augment the sensor information and
other applications of project Cyrano – the OCU could in
this case be the preexisting user interface on a tablet PC
or any other computing device supporting an OSGi
runtime. Farther in the future, work would include use of
an OSGi runtime on a fully functional, useable robot (as
opposed to just a research platform) with the goal to
create a robot based on a flexible, open architecture that is
easy and cost effective to update and reconfigure.

6. CONCLUSIONS

In this paper, we have detailed and demonstrated
through example three key concepts for development of
unmanned systems and sensors – Model Driven
Engineering, OSGi, and a Services Oriented Architecture.
We have shown that, by using a Model Driven
Engineering approach, components can be developed by
software engineers and then combined into a system by
someone with domain level expertise (i.e. a robotics
engineer) but without a lot of software engineering
experience. We have shown that by basing these
components on a Services Oriented Architecture, we can
create extremely flexible and reconfigurable designs that
allow for a mix of simulated and real hardware, which is
extremely powerful during testing and development.
Finally, we have shown how using OSGi along with a
Services Oriented Architecture allows us to rapidly
deploy new features to robotic systems and unattended
sensors in order to help ensure they remain interoperable
with other systems, and rapidly update their capabilities
when needed. All of these concepts combine to allow us
to rapidly develop and update unmanned systems and
sensors as soon as requirements and feedback come in.

REFERENCES

Czarnecki, K., Bednasch, T., Unger, P., and Eisenecker,
U., 2002: Generative Programming for Embedded
Software: An Industrial Experience Report,
Proceedings ACM SIGPLAN/SIGSOFT Conference,
GPCE, Pittsburgh, PA, October 2002.

Eclipse, 2006: Equinox, http://www.eclipse.org/equinox

Generic Modeling Environment, 2006:
http://www.isis.vanderbilt.edu/projects/gme

JAUS, 2006: JAUS, http://www.jauswg.org

OSGi Alliance, 2006: Welcome to the OSGi Alliance,
http://www.osgi.org

Schmidt, D., 2006: Model Driven Engineering, IEEE
Computer, February 2006, 25-31

8

http://www.eclipse.org/equinox
http://www.isis.vanderbilt.edu/projects/gme
http://www.jauswg.org/
http://www.osgi.org/

	Embedded System Control Language

